Worst. Ideas. Evar.

TODO: Subtitle

Scope

e We're not here to trash on other ppl's
projects.

e Not a worst practices show and tell.

e Well engineered, but horrible ideas.

Bios

e We both work at AT&T Interactive.

e We've done ruby for a long time.
e Blah blah blah boring...

Bios

e We both work at AT&T Interactive.

e We've done ruby for a long time.
e Blah blah blah boring...

NOTE:
none of this
presentation or
software was

supported, sanctioned,
endorsed, or even
tolerated by our
employer.

Monday, December 7, 2009

AT&T Interactive:

Please don t fire us!

O aron D ulterson

® [ikes Kittens, ponies, and vim.
® s totally in love with his mustache.
® Prefers to write C code over ruby. Think about it:
® Nnokogiri? C
® johnson? C
® never_say_die? C
® psych? C
® phuby? C
® nfc? C

® carworm®e C

® qrtools? C

Monday, December 7, 2009

Ruan Davis

® [ikes kittens, ponies, and emacs.
® Is totally in love with his ponytail.
® Wishes Sting never left the Police.
® Fears nothing except:
® mushrooms
® asparagus
® Hates it when I sing.

Redacted

® Same colors, everyday.

Monday, December 7, 2009

What is a Bad Idea?

Meta: These Slides

Not [hese Slides

eeeeeeeeeeeeeeeeeeeee

These Slides

Field Guide

Spotting bad ideas in the wild

e Well engineered & tested.
e Useless-ish.

e Poe's Law.

e Spiral nature.

Field Guide

Spotting bad ideas in the wild

e Well engineered & tested.
e Useless-ish.

e Poe's Law.

e Spiral nature.

W
Well Engineered & Tested

e Bad Ideas |= Bad Code.
e Good Code + Tests > Horrible Idea.

e Be wary of the well tested project!

Useless-ish “

e They must be useless... ish.

e They should do something.

e Just not anything you need/want.

Poe's Law

"Without a winking smiley or other blatant display of
humour, it is impossible to create a parody of
fundamentalism that someone won't mistake for the real
thing," [1]

"..it is hard to tell parodies of fundamentalism from the
real thing, since they both seem equally insane.
Conversely, real fundamentalism can easily be mistaken
for a parody of fundamentalism." [2]

[1] http://en.wikipedia.org/wiki/Poe’s_law
[2] http://rationalwiki.com/wiki/Poe’s_Law
[awesome] http://conservapedia.com/Poe’s_law

Monday, December 7, 2009

http://rationalwiki.com/wiki/Fundamentalism
http://rationalwiki.com/wiki/Fundamentalism
http://en.wikipedia.org/wiki/Poe's_law
http://en.wikipedia.org/wiki/Poe's_law
http://rationalwiki.com/wiki/Poe's_Law
http://rationalwiki.com/wiki/Poe's_Law
http://conservapedia.com/Poe's_law
http://conservapedia.com/Poe's_law

Poe's Law b

e From high level, they can sound perfectly
reasonable.

e Solution looking for a problem.

e They don't solve any immediate problems at
hand. They generate them.

e Everyone always ignores that guy in the corner
asking "Really???”. T mean, ¢ mon... what does
he know?

Monday, December 7, 2009

Spiral Nature

 The best part of Bad Ideas is that
they build upon one another.

e Hopefully with cyclic dependencies.

Hypothetical Examples

(Read: We haven't finished them... yet)

e XML multi file format (ala java's jar
format)

e DRB over RFID
e DRB over QR/Bar Code via webcams

e Assembly optimized web pages
e FFI

Yoda

Monday, December 7, 2009

Yoda

e Bad ideas can be high level.

e Test frameworks are the new IRC
bot!

e Yoda defines a spec language in the
direction we think they should be.

Bowling.yoda {
"score 0 for gutter game".it will ({
bowling = Bowling.new
20.times { bowling.hit(0) }

bowling.score 0.1t 1is?
bowling.score 42.it 1is not!

Monday, December 7, 2009

./lib/yoda.rb:5:in fail me': Fail me you
did: 1 !'= 0 (Yoda::FailMe)

from ./lib/yoda rb:19:in "matches'

from (eval):5:in "score'

from example.rb:19

from ./lib/yoda.rb:45:in it will'

from example.rb:15

from ./lib/yoda.rb:63:in "yoda'

from example.rb:14

W
So Simple It Can't Break

e 65 lines of Jedi Master Ruby.
e 3 conditionals, 1 loop.

e Flogs to 41.1, avg 4.1 / method. LOW!

e How can you go wrong?

Useless, am I? “

e Not exactly very expressive.

e Then again, doesn't need to be.

Poe's got nothin' on Yoda ,

e Really? Another test framework?

e Really?

The Force is Everywhere
S

e Tt is a test framework...

e You can use it everywhere!

Monday, December 7, 2009

Ruby is SLOW

C is not!

Monday, December 7, 2009

But, why write in C?

When you can write
in Assembly?

Wilson

e Bad ideas can be very
low level.

e Generates x86
machine code via a
"natural” feeling ruby

DSL.

e Named after the

very metal Wilson
Bilkovich.

Monday, December 7, 2009

Inline-C

class Counter
inline do |builder|
builder.c "
long cee(int n) {
long 1;
for (1 = 0:1i<n+1;i++) {};
return 1;

}II
end
end

Wilsasm

class Counter
defasm :asm2, :n do
eax.Xor eax

edx.mov arg(0)
from ruby edx
edx.1nc

count = self. label
eax.1nc

eax.cmp edx

jnz count

to ruby eax

end
end

Monday, December 7, 2009

Wilsasm

class Counter
defasm :asm2, :n do
eax.Xor eax

edx.mov arg(0)
from ruby edx
edx.1inc

count = self. label
eax.1lnc

eax.cmp edx

jnz count

to ruby eax
end
end

.' 1 !" 5* 0‘ c. "
Monday, December 7, 2009

Benchmarks!

% rm -r ~/.ruby inline; ./bench.rb 1 000 000 1 000
of 1terations = 1000000
$n = 1000

user system total real
null time 0.120000 0.000000 0.120000 (0.122507)
cee nil 0.280000 0.000000 0.280000 (0.279552)
asm nil 0.280000 0.000000 0.280000 (0.275498)
ruby nitl 0.370000 0.000000 0.370000 (0.372142)
cee 0.830000 0.010000 0.840000 (0.837607)
asm2 0.830000 0.000000 0.830000 (0.839430)
asm 3.520000 0.000000 3.520000 (3.542521)
ruby 08.970000 0.430000 99.400000 (101.903256)

Monday, December 7, 2009

Whip-Smart

* Generates machine code directly:
 No dependencies.

e No external resources.

e Parses the 60 page x86 spec into
instructions and their opcodes.

"Uses" “

e Good at writing really fast code.
e And crashing. Fast.

e T don't think anyone uses this.

e (I hope not)

Poe Man's Dispatch ;

e The original intent was to write a
pure ruby method dispatch function.

e But that is hard.

* And we got laid of f of Rubinius.

Spiral?

e Tt was intended to be the core of a
new ruby implementation.

e How much more spiral do you want?

Wank

Monday, December 7, 2009

Wank

e Human Readable Marshal Format

Why Wank?

Marshal data is too hard
to read

Marshal.dump nil # => "\004\bO"

\

Unreadable,
therefore useless

YAML is too hard to read

YAML.dump nil # => "--- \n"

\

Unreadable,
therefore useless

Websites are
Readable

Exhibit A

> INDES, 0N TRUCTIONZ D

» - - #
. . ; "~ ’ » .
RS SR B

LJ
= | | s
. B COMIC TITLE: Nachos * . T

-

» »
. ’

» »
’ »

» »
» .

» »

Monday, December 7, 2009

The Guts

Language
Dependencies

e Ruby (of course)
e YAML (psych)
e XML / HTML (nokogiri)

Data is a Tree

:fOO => [1;213;4]1
'mom' => Struct.new(:data).new('bar')

Ruby Data Graph
|

HTML data graph

Translation
R

HTML data is a
subset of Ruby

YAML to the rescue

W

YAML Representation

mom: !ruby/struct
:data: bar

Ruby => YAML AST

Mapping

Monday, December 7, 2009

W

YAML AST => HTML

HTML
BODY

o]

DD /DL

Monday, December 7, 2009

Sample Use

0o = {
:fOO => [1;2;3;4]1
'bar' => Struct.new(:foo).new('bar')

}

Wank: :HTML: :Marshal.dump(o)

<dl>
<dt>bar</dt>
<dd>
<dl class="!ruby/struct ">
<dt>foo</dt>
<dd>bar</dd>
</dl>
</dd>
<dt>:foo</dt>
<dd>

1l</11>
2</11i>
3</11>
4</11i>

</dd>
</dl>

Monday, December 7, 2009

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

SO http://localhost/~apatterson/test.html
[4| >] [4+ |6 http://localhost/~apatterson/test.html C] CQ' Google
i3* Bonjourv Apple Yahoo! Google Maps YouTube Wikipedia News (153)v Popularv

bar

Monday, December 7, 2009

Wank in Stylel 7

dl {
border: solid green;
}
dt:after {
content: " => "
}
ol {

border: solid blue;

}

http://localhost/~apatterson/test.html

(S http://localhost/~apatterson/test.html| C] (Qv Google

i Bonjourv Apple Yahoo! Google Maps YouTube Wikipedia News (153)v Popularv

Monday, December 7, 2009

The Circle of
Terrible

Wank over DRDb

HTML!

Monday, December 7, 2009

Wank over DRb

DRb::Marshal = Wank::HTML: :Marshal

Wank on Rack

module Rack
class Wank
include Wank: :HTML

def call env

[

200,
{},
Marshal.dump("hello")
]
end
end

end

Monday, December 7, 2009

Wank on Rails

class WankController
def show
@wanker = Wanker.find(params[:1d])
render :text =>
Wank: :HTML: :Marshal.dump (@wanker)
end
end

You can Wank
Anywhere!

Never Say Die

Never Say Die

e Rescue from segfaults

e Create segfaults

libsigsegv

e pageable virtual memory
e memory mapped access to databases
e generational garbage collectors

e stack overflow handlers

e distributed shared memory

libsigsegv

e pageable virtual memory

e memory mapped access to databases
e jenerc io al garl ag: collec ors

e stack « ver ‘low k and zrs

e distributed shared memory

Monday, December 7, 2009

Trap INT

trap(“INT”) do
puts "haha! no!*"
end

Trap SEGV

begin

. # something dangerous
rescue NeverSayDie

. # F1x your memory!

end

Monday, December 7, 2009

Fully Tested

NeverSayDie:isegv

begin
NeverSayDie.segv

rescue NeverSayDie => maverick
return maverick # =>

end

Monday, December 7, 2009

begin
NeverSayDie.segv

rescue NeverSayDie => maverick
return maverick # =

end

Monday, December 7, 2009

Uselessish “

Uselessish “

e If you think you need this...

Uselessish “

e If you think you need this...

e well, you probably do.

Poe's Law b

begin
asm :thuper optimized do
eax.mov 0

ecx.mov 10

count = self. label
eax.add 1

count. Lloop

to ruby eax
le

rescue NeverSayDie # run the slow one :(
1.upto(1l0) do; end
end # really??

Monday, December 7, 2009

Never Say Die, on Rails
S

class SegvController < ...
def 1ndex

rescue NeverSayDie
. # Yay! More uptime!

end
end

Phuby

Monday, December 7, 2009

Because Rails

programmers are
secretly PHP
programmers

Hire PHP
Programmers!

They re cheap!

Phuby

e PHP embedded in Ruby

Source of Bad Ideas

e Ryan came up with the idea of Phuby.

e Aaron implemented phuby.

e Ryan is counting this as a win x 2.

Well Engineered

Ruby var => PHP

HP

Ruby

Ruby var => PHP

| PHP

Ruby

Weak Ref Table

e PHP object memory location (INT)
e VALUE

PHP calling Ruby

Ruby

PHP

Ruby

| PHP

PHP calling

Ruby

Ruby calling PHP

Ruby

HP

Ruby calling PHP

Ruby ‘

| PHP

Ruby.PHP() ;

Phuby: :Runtime.php do |rt}|
rt.eval('$v = strlen("PHP IS AWESOME"); ")
puts rt['v'] # => 14

end

Ruby.PHP() ;

Phuby: :Runtime.php do |rt]
rt.eval('$foo = array();")
rt.eval('$foo["hello"] = "world":;"')

foo = rt['foo'] # => #<Phuby::Array:0x101f81848>
p foo['hello'] # => ‘world’
end

Monday, December 7, 2009

$PHP->Ruby(); Y

class FUN
def times
puts "hello"
end
end

Phuby: :Runtime.php do |rt}
rt['fun'] = FUN.new
rt.eval('$fun->times():;') # => hello
end

You got your PHP in my...

N VCX

MILK CHOCOLATE
\

2 PEANUT BUTTER CUPS NETWT

15 07 (420)

Monday, December 7, 2009

Runtimes b

Ruby

Embedded Runtimes ,
Ruby

Embedded Runtimes ,
Ruby

Circle of Terrible

(In a fail bowl)

Web Adapters

WERRIck

PHP Events

class Events < Phuby::Events
def initialize req, res

@req = reg
@res = res
end

def header value, op
kK, v = *value.split(':"', 2)
1f k.downcase == 'set-cookie'
@res.cookies << v.strip
else
@res[k] = v.strip
end
end

def write string
@res.body ||= "'
@res.body << string
end

def send headers response code

end
end

Monday, December 7, 2009

Adapter

module Phuby
class PHPHandler < WEBrick::HTTPServlet::FileHandler
def process verb, req, res
file = File.join(@root, req.path)

Dir.chdir(File.dirname(file)) do
Phuby: :Runtime.php do |rt|
rt.eval("date default timezone set('America/Los Angeles');")

rt['logger'] = Logger.new($stdout)
req.request uri.query.split('&').each do |pair| S
k, v = pair.split '='
rt[" GET"][k] = v
end if reqg.request uri.query

req.query.each do |k,v|
rt[" #{verb}"][k] = v
end if :POST == verb

Set CGI server options

reqg.meta vars.each do |k,Vv|
rt[" SERVER"][K] = v || '

end

rt[" SERVER"]['REQUEST URI']

req.request uri.path

req.cookies.each do |cookie]
rt[" COOKIE"][cookie.name]
end

CGI.unescape(cookie.value)

events = Events.new req, res

rt.with events(events) do
File.open(file, 'rb') { |f| rt.eval f }
end
end
end
if res['Location']
res['Location'] = CGI.unescape res['Location']
res.status = 302
end
end
end
end

Monday, December 7, 2009

Rack

Monday, December 7, 2009

Rack is Hip

Rack is totally
sweet bro

.

http://www.flickr.com/photos/chromewavesdotorg/528814269/

Monday, December 7, 2009

http://www.flickr.com/photos/chromewavesdotorg/528814269/
http://www.flickr.com/photos/chromewavesdotorg/528814269/

Phrack

e 50 Lines
e Totally Hip

class Rack::Phrack < Rack::File
class Events < Struct.new(:code, :headers, :body)
def write string; body << string; end
def send headers response code; end

def header value, op
k, v = value.split(': ', 2)
self.code = 302 if k == 'Location'
headers[k] = [headers[k], Rack::Utils.unescape(v)].compact.join "\n"

end
end :E;

def call env

events = Events.new 200, {}, ''

file = File.join @root, env['PATH INFO']

file = File.join file, "index.php" if File.directory?(file)
return super unless file =~ /php$/

Dir.chdir(File.dirname(file)) do
Phuby: :Runtime.php do |rt]
rt.eval "date default timezone set('America/Los Angeles');" # *shrug*

{ Rack::Utils.parse query(env['QUERY _ STRING']) => " GET",
Rack::Utils.parse query(env['rack.input'].read) => " POST",
Rack::Utils.parse query(env['HTTP COOKIE'], ';') => " COOKIE",

}.each do |from, to]
from.each { |k,v| rt[to]l[k] = v }
end

env.each { |k,v| rt[' SERVER']J[k] = v || "' unless k =~ /"“rack/ }
rt[" SERVER"]['REQUEST URI'] = env['PATH INFO']

rt.with events(events) { open(file) { |f| rt.eval f } } # RUN!
end
end
events.to a
end
end

Rack: :Handler: :WEBrick.run(Rack: :Phrack.new(ARGV[O] || Dir.pwd), :Port => 10101)

Monday, December 7, 2009

Phuby Blargh

DHH did it in 15
minutes

We can do it in 2

Wordpress on Ruby Video

http://www.youtube.com/watch?v=MXERy8Y2eVo

http://www.youtube.com/watch?v=MXERy8Y2eVo
http://www.youtube.com/watch?v=MXERy8Y2eVo

Enterprise

Scalable software at its finest

Guiding Principles

Ruby does not scale

http://www.flickr.com/photos/drewm/3016905054/

Monday, December 7, 2009

http://www.flickr.com/photos/drewm/3016905054/
http://www.flickr.com/photos/drewm/3016905054/

scales

http://www.flickr.com/photos/drewm/3016905054/

Monday, December 7, 2009

http://www.flickr.com/photos/drewm/3016905054/
http://www.flickr.com/photos/drewm/3016905054/

http://www.flickr.com/photos/drewm/3016905054/

Monday, December 7, 2009

http://www.flickr.com/photos/drewm/3016905054/
http://www.flickr.com/photos/drewm/3016905054/

http://www.flickr.com/photos/drewm/3016905054/

Monday, December 7, 2009

http://www.flickr.com/photos/drewm/3016905054/
http://www.flickr.com/photos/drewm/3016905054/

boss

http://www.flickr.com/photos/drewm/3016905054/

Monday, December 7, 2009

http://www.flickr.com/photos/drewm/3016905054/
http://www.flickr.com/photos/drewm/3016905054/

boss

http://www.flickr.com/photos/drewm/3016905054/

Monday, December 7, 2009

http://www.flickr.com/photos/drewm/3016905054/
http://www.flickr.com/photos/drewm/3016905054/

Monday, December 7, 2009

Trees

Monday, December 7, 2009

2 + 10

Monday, December 7, 2009

Ruby Parser

2 + 10

Monday, December 7, 2009

XML

<?xml version="AWESOME"
encoding=""MERKIN" 7>

<root>
<left />
<right />

</root>

Monday, December 7, 2009

XML

Monday, December 7, 2009

Nokogiri
<root> | : @

<left /> " . -
cright /> Semmmmememy
</root>

Monday, December 7, 2009

Enterprise

Monday, December 7, 2009

"Uses”

Meta-programming

Convert “foo" to "bar" !

sexml = Enterprise::SEXML DATA. read

sexml.xpath('//*[@value = "foo"]"').each do |node|
node['value'] = 'bar’
end

puts sexml.to ruby

~ END
class Foo
end

foo = Foo.new
foo.hello

Monday, December 7, 2009

class Foo

end

bar = Foo.new
bar.hello

Monday, December 7, 2009

Not Enterprise
Enough

<?xml version="1.0" encoding="UTF-8"7>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rqg/
1999/XSL/Transform"> ll
<xsl:template match="//*">
<xsl:copy>
<xsl:1f test="@type">
<xsl:attribute name="type">
<xsl:value-of select="@type" />
</xsl:attribute>
</xsl:1f>
<xsl:1f test="@value">
<xsl:attribute name="value">
<xsl:choose>
<xsl:when test="@value = 'foo'">bar</xsl:when>
<xsl:otherwise>
<xsl:value-of select="@value"/>
</xsl:otherwise>
</xsl:choose>
</xsl:attribute>
</xsl:1f>
<xsl:apply-templates />
</xsl:copy>
</xsl:template>
</Xxsl:stylesheet>

Monday, December 7, 2009

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform

foo bar

Monday, December 7, 2009

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform

sexml = Enterprise: :SEXML DATA. read
xslt = Nokogiri::XSLT(File.read(ARGV[O]))

doc = xslt.transform sexml
puts doc.to ruby

~ END
class Foo
end

foo = Foo.new
foo.hello

Monday, December 7, 2009

Monday, December 7, 2009

http://www.flickr.com/photos/psd/2928326253/
http://www.flickr.com/photos/psd/2928326253/
http://www.flickr.com/photos/29364131@N07/3119439609/
http://www.flickr.com/photos/29364131@N07/3119439609/

‘NAL av \/KZ >

Av'vL
L A 4 > <
a'’s
> 3
"N
L X
\ N

<?2XML?> |
<sucka />

<"

!
htep:yweg flicidcs 052936413 I
I S = UL P
Monday, December 7, 2009

http://www.flickr.com/photos/psd/2928326253/
http://www.flickr.com/photos/psd/2928326253/
http://www.flickr.com/photos/29364131@N07/3119439609/
http://www.flickr.com/photos/29364131@N07/3119439609/

Poe's Law b

e Code as XML?

e The name "Enterprise”

e Everything about this project?

Spiral Downward

N VCX

Enterprise Rails

e Rails isn't Enterprisey enough.
e We "fixed" that.

Enterprise Rails Video

http://www.youtube.com/watch?v=ar2eqEoMUTw

http://www.youtube.com/watch?v=ar2eqEoMUTw
http://www.youtube.com/watch?v=ar2eqEoMUTw

Actual Benefitsl!

e Several bugs in ruby2ruby and nokogiri
were found while working on this.

e T could have fixed these bugs at any
time, but I wasn't looking for them.

e Apparently a bad idea is a good reason
to fix things.

Bringing it All
Together

Phuby on Phails

Phuby on Phails Video

http://www.youtube.com/watch?v=IsVVK|Sé6Vufw

http://www.youtube.com/watch?v=lsWKjS6Vufw
http://www.youtube.com/watch?v=lsWKjS6Vufw

Enterprise Phuby Rails

e We haven't written this yet...
e Tt should only take about 30 min.

e How much should we charge for it?

Conclusion

It's OK if your idea
is bad

Just practice Good
Engineering

You know, for funl

2009:. Worst Year
for Ruby Ever.

Together we can make
2010 even worse

Thank You

